Article ID Journal Published Year Pages File Type
1722299 Journal of Hydrodynamics, Ser. B 2013 8 Pages PDF
Abstract

This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of highspeed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homogeneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for compressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering