Article ID Journal Published Year Pages File Type
1722385 Journal of Hydrodynamics, Ser. B 2013 9 Pages PDF
Abstract

Generation of the transient flexural- and capillary-gravity waves by impulsive disturbances in a two-layer fluid is investigated analytically. The upper fluid is covered by a thin elastic plate or by an inertial surface with the capillary effect. The density of each of the two immiscible layers is constant. The fluids are assumed to be inviscid and incompressible and the motion be irrotational. A point force on the surface and simple mass sources in the upper and lower fluid layers are considered. A linear system is established within the framework of potential theory. The integral solutions for the surface and interfacial waves are obtained by means of the Laplace-Fourier transform. A new representation for the dispersion relation of flexural- and capillary-gravity waves in a two-layer fluid is derived. The asymptotic representations of the wave motions are derived for large time with a fixed distance-to-time ratio with the Stokes and Scorer methods of stationary phase. It is shown that there are two different modes, namely the surface and interfacial wave modes. The wave systems observed depend on the relation between the observer's moving speed and the intrinsic minimal and maximal group velocities.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering