Article ID Journal Published Year Pages File Type
1722762 Journal of Hydrodynamics, Ser. B 2011 13 Pages PDF
Abstract

In this article, the 2-D unsteady viscous flow around two circular cylinders in a tandem arrangement is numerically simulated in order to study the characteristics of the flow in both laminar and turbulent regimes. The method applied alternatively is based on the finite volume method on a Cartesian-staggered grid. The great source term technique is employed to identify the cylinders placed in the flow field. To apply the boundary conditions, the ghost-cell technique is used. The implemented computational method is firstly validated through simulation of laminar and turbulent flows around a fixed circular cylinder. Finally, the flow around two circular cylinders in a tandem arrangement is simulated and analyzed. The flow visualization parameters, the Strouhal numbers, and drag and lift coefficients are comprehensively presented and compared for different cases in order to reveal the effect of the Reynolds number and gap spacing on the behavior of the flow. The obtained results have shown two completely distinct flow characteristics in laminar and turbulent regimes.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering