Article ID Journal Published Year Pages File Type
172569 Computers & Chemical Engineering 2013 9 Pages PDF
Abstract

•A CFD–DEM model is developed for simulations on complex geometries.•DEM is coupled with ANSYS/Fluent Eulerian multiphase model.•The current model is validated against a series of typical fluidization cases.

CFD–Discrete Element Method (DEM) model is an effective approach for studying dense gas–solid flow in fluidized beds. In this study, a CFD–DEM model for complex geometries is developed, where DEM code is coupled with ANSYS/Fluent software through its User Defined Function. The Fluent Eulerian multiphase model is employed to couple with DEM, whose secondary phase acts as a ghost phase but just an image copy of DEM field. The proposed procedure preserves phase conservation and ensures the Fluent phase-coupled SIMPLE solver work stable. The model is used to simulate four typical fluidization cases, respectively, a single pulsed jet fluidized bed, fluidized bed with an immersed tube, fluidization regime transition from bubbling to fast, and a simplified two-dimensional circulating fluidized bed loop. The simulation results are satisfactory. The present approach provides an easily implemented and reliable method for CFD–DEM model on complex geometries.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,