Article ID Journal Published Year Pages File Type
1726427 Ocean Engineering 2011 10 Pages PDF
Abstract

Regular waves were applied in a laboratory flume to investigate the evolutions of the velocity fields near above a fine sandy bed (d50=0.073 mm) during fluidized responses. Measurements of 2D velocity components and suspended sediment concentration (SSC) at 1 cm above the bed in addition to water surface displacements and sub-soil pore pressures were carried out with an acoustic Doppler velocimeter and an optical probe. The results have shown similar three typical soil responses including one unfluidized and two fluidized responses to previous report in other fine-grained soil beds. In the post- and pre-fluidized stages of a resonantly fluidized response, amplitudes of horizontal velocity component can be decreased by a maxima value of 50% while vertical components can be amplified up to 5 times larger. The developments of near-bed velocity field become less significant in consecutive non-resonantly fluidized responses. Particularly, the evolutions of the velocity field are closely dependent on the deepening of fluidized surface soil layers df and the characteristics of soil fluidization responses. The amplified vertical velocity components are clearly contradictory to the dissipated overloading waves near above a fluidized bed but are critical to much drastic sediment suspensions by interactions between overloading waves and fluidized bed soils.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , ,