Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1726482 | Ocean Engineering | 2011 | 7 Pages |
Eddy current brakes provide a versatile way of simulating the power take-off system (PTO) in model testing of small scale wave energy converters (WECs). This type of PTO simulator is based on the principle that a conductive material moving in a magnetic field generates a braking force proportional to its velocity. A bottom-hinged pitching plate WEC model has been designed using an eddy current brake as a PTO simulator. A dedicated electric current source unit was developed to provide a controllable and reliable level of DC current intensity to feed the magnetic field generating coils. Using a real-time data acquisition and control, this unit can be used to impose non-linear damping PTO characteristic curves in several types of WEC models based on eddy current brakes. In the present case, this current source has been used to simulate a constant damping PTO on a small scale pitching WEC model that has been tested in the IST wave flume. Two different cases were considered: one corresponding to a surface piercing plate and another to a fully submerged plate. Experimental results are presented for plate motion and for non-dimensional capture width.
► Experimental modelling of a bottom-hinged pitching plate. ► Power take-off system simulator using eddy current brakes. ► Real-time control of the power take-off non-linear damping.