Article ID Journal Published Year Pages File Type
1726539 Ocean Engineering 2011 13 Pages PDF
Abstract

The reliability and/or stability of the lifeline structures against failure under seismic loads are of critical concern, and must be studied carefully. Therefore, the main objective of this paper is to demonstrate the commonly encountered backfill effects on the dynamic response of rectangular tanks. However, only the exterior wall of the tank which interacts with both the backfill and fluid is tackled, as each part of the structure shows considerable differences in terms of both the load bearing mechanisms and the geometrical and positional differences. Finite element analyses are employed, taking into consideration the fluid–wall–backfill interaction. The analyses are conducted to observe whether or not both backfill and wall behavior can be affected by variation of the internal friction angle. For that purpose, some comparisons are made on vertical displacements of the backfill, roof displacements, stress responses, etc., by means of internal friction angle variations of the backfill from 25° to 40°. Consequently, it is observed that the variations on maximum vertical displacements are affected considerably. In contrast, the maximum stress responses are affected partially. However, the inertial effects of the backfill show that pseudo-static approximations may be insufficient to understand the dynamic behavior of the backfill–wall–fluid system.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , , ,