| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1726800 | Ocean Engineering | 2009 | 14 Pages |
Parametric models of heave, pitch and roll dynamics of a high-speed craft have been estimated for different wave incidence angles in the frequency domain. Several issues that make the identification problem interesting are the following: type of parameterization, starting values, non-quadratic functions, excitation signals and short data record. The method employed guarantees a fine linear approximation of the nonlinear dynamics of a fast ship for the ultimate goal of stabilization control to reduce motion sickness associated with heave, pitch and roll accelerations. In addition, the approach achieves high-quality starting values and avoids non-quadratic terms in the cost function, which results in less computational load and significantly more accurate models when compared with a previous method employed for the same problem.
