Article ID Journal Published Year Pages File Type
1726834 Ocean Engineering 2008 15 Pages PDF
Abstract

Positioning accuracy of an ultra short baseline (USBL) tracking system is significantly reduced with the increase of alignment errors in the installation of sensors. Although techniques for sensor alignment calibration have been developed, they are either complex or lacking in rigor. This study proposes an algorithm to estimate the angular misalignments of a USBL transceiver relative to attitude sensors. The numerical algorithm is based on the positioning errors caused by heading, pitch, and roll misalignments, respectively, when running a circular survey around a seabed transponder. The positioning errors introduced by the angular misalignments outline an iterative scheme of estimating the roll alignment error first, next the heading alignment error, and then finally the pitch alignment error. This makes possible the efficient estimation of all angular misalignments with a high degree of accuracy. With the consideration of measurement error and executing a non-centered and non-perfect circle around the true transponder position, numerical simulations are performed to validate the effectiveness of the proposed algorithm. The simulation results show that the proposed algorithm is robust to the effects of measurement error, non-centered circles, and non-perfect circles. Moreover, the estimates converge fairly quickly, and can be achieved with good accuracy in only a few iterations.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
,