Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1726938 | Ocean Engineering | 2008 | 9 Pages |
Two types of analytical solutions for waves propagating over an asymmetric trench are derived. One is a long-wave solution and the other is a mild-slope solution, which is applicable to deeper water. The water depth inside the trench varies in proportion to a power of the distance from the center of the trench (which is the deepest water depth point and the origin of x-coordinate in this study). The mild-slope equation is transformed into a second-order ordinary differential equation with variable coefficients based on the longwave assumption [Hunt's, 1979. Direct solution of wave dispersion equation. Journal of Waterway, Port, Coast. and Ocean Engineering 105, 457–459] as approximate solution for wave dispersion. The analytical solutions are then obtained by using the power series technique. The analytical solutions are compared with the numerical solution of the hyperbolic mild-slope equations. After obtaining the analytical solutions under various conditions, the results are analyzed.