Article ID Journal Published Year Pages File Type
1726978 Ocean Engineering 2008 11 Pages PDF
Abstract
Severe hurricanes, such as Katrina, broke the mooring lines of a number of mobile offshore drilling units (MODU) deployed in the Gulf of Mexico and some of those MODUs went adrift. A drifting MODU may damage other critical elements of the offshore oil and gas infrastructure by colliding with floating or fixed production systems and transportation hubs, or by rupturing pipelines owing to their dragging anchors over the seabed. To avoid or mitigate the damage caused by a drifting MODU, it is desirable to understand the mechanics of the drift of a MODU under the impact of severe wind, wave and current and have the capability of predicting the trajectory of the drift. To explore the feasibility and accuracy of predicting the trajectory of a drifting MODU based on hindcast met-ocean conditions and limited knowledge of the condition of the drifting MODU, this study employed a simplified equation describing only the horizontal (surge, sway and yaw) motions of a MODU under the impact of steady wind, current and wave forces. The simplified hydrodynamic model neglects the first- and second-order oscillatory wave forces, unsteady wind forces (owing to wind gustiness), wave drift damping, and the effects of the body oscillation on the steady wind and current forces. It was assumed that the net effects of the oscillatory forces on the steady motion are insignificant. To verify the accuracy and feasibility of our simplified approach, the predicted drifting trajectories of two MODUs were compared with the corresponding measurements recorded by the global positioning system (GPS).
Keywords
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, ,