Article ID Journal Published Year Pages File Type
1727084 Ocean Engineering 2008 10 Pages PDF
Abstract

A time-domain method is employed to analyse the resonant oscillations of the liquid confined within the two floating bodies. The velocity potentials at each time step are obtained through a finite-element method (FEM) with quadratic shape functions. The matrix equation of the FEM is solved through an iteration. The radiation condition is satisfied through a combination of the damping zone method and the Sommerfeld–Orlanski equation. A detailed analysis is made for two rectangular floating cylinders undergoing forced oscillation. The first-order potential reveals the resonant behaviour of the wave motion at certain frequencies ωi, which is similar to sloshing in a tank. More interestingly, the second-order theory further reveals that when the oscillation frequency is at ωi/2 or half of the resonant frequency, no first-order resonance is observed as expected, but the second-order resonant motion becomes evident, which does not seem to have been extensively investigated so far. Detailed results for two rectangular cylinders are provided to show some insights into the resonant effect due to the interaction between the bodies. The first- and second-order resonant phenomena have been observed and the result has shown that the second-order components have significant influence on the wave and force in some cases, especially at the second-order resonance.

Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, ,