Article ID Journal Published Year Pages File Type
1727453 Ocean Engineering 2007 14 Pages PDF
Abstract
In this study, we investigate two internal wave generation methods in numerical modeling of time-dependent equations for water wave propagation, i.e., delta source function method and source term addition method, the latter of which has been called the line source method in literatures. We derive delta source functions for the Boussinesq-type equations and extended mild-slope equations. By applying the fractional step splitting method, we show that the delta source function method is equivalent to the source term addition method employing the energy velocity. This suggests that the energy velocity should be used rather than the phase velocity for the transport of incident wave energy in the source term addition method. Finally, the performance of the delta source function method is verified by accurately generating nonlinear cnoidal waves as well as linear waves for horizontally one-dimensional cases.
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , ,