Article ID Journal Published Year Pages File Type
1727518 Ocean Engineering 2007 9 Pages PDF
Abstract

Excellent station keeping characteristics and relative insensitivity with increasing water depth make triangular tension leg platforms (TLPs) a proven concept in deep water oil exploration. TLPs are often subjected to less probable forces which arise due to collision of ships, icebergs or any other huge sea creature. Dynamic analysis of two triangular TLP models at water depths 1200 and 527.8 m is performed under regular waves along with impulse load acting at an angle of 45 degrees at the TLP column. Hydrodynamic forces on these TLPs are evaluated using modified Morison equation, based on water particle kinematics arrived at using Stokes’ fifth order wave theory. Based on numerical studies conducted, it is seen that impulse loading acting on corner column of TLP significantly affect its response while that acting on pontoons dose not affect TLPs behaviour.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , , ,