Article ID Journal Published Year Pages File Type
1727933 Annals of Nuclear Energy 2016 15 Pages PDF
Abstract
A novel method has been developed to calculate sensitivity coefficients in coupled Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity. Different uncertainty propagation methodologies, such as One-At-a-Time (OAT) and hybrid Monte-Carlo/deterministic methods have been tested and are discussed on an actual example of ND uncertainty problem on a Material Testing Reactor (MTR) benchmark. Those methods, unlike total Monte Carlo (MC) sampling for uncertainty propagation and quantification (UQ), allow obtaining sensitivity coefficients, as well as Bravais-Pearson correlations values between Boltzmann and Bateman, during the depletion calculation for global neutronics parameters such as the effective multiplication coefficient. The methodologies are compared to a pure MC sampling method, usually considered as the “reference” method. It is shown that methodologies can seriously underestimate propagated variances, when Bravais-Pearson correlations on ND are not taken into account in the UQ process.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,