Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1728491 | Annals of Nuclear Energy | 2014 | 7 Pages |
Abstract
During a severe nuclear reactor accident involving core melt down conditions, the deposition of fission product aerosols inside the reactor coolant system affects the final source term available to the containment and subsequently to the environment. Towards quantifying the aerosol deposition under varying flow conditions and thermal gradients, as may be encountered in the heat transport systems, experiments were performed to investigate the dry deposition behavior of metal oxide aerosols in a 3.6Â m long stainless steel piping test assembly. This assembly consisted of divergent and convergent sections, horizontal and vertical sections and right angle bends. Tin oxide aerosols, generated by a plasma torch aerosol generator, were transported into the test assembly using argon carrier gas. Temperature sensors coupled to data loggers were used to record the pipe inner wall and carrier gas temperatures. The experimental deposition results were found to be within 8% of those estimated by the SOPHAEROS module of the accident analysis code ASTEC (Accident Source Term Evaluation Code). Code results for experimental input parameters showed that for sections at higher temperature gradients the dominant deposition mechanism was thermophoresis, while in sections for low thermal gradients, gravitational settling dominated. The micrographs obtained using Transmission Electron Microscopy (TEM) showed that the deposited Tin oxide particles were mostly spherical and bimodal in nature. The X-ray diffraction (XRD) analysis showed that plasma torch generated aerosols exhibit tetragonal SnO and SnO2 phases.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
R. Modi, A. Khan, M. Joshi, S. Ganju, A.K. Singh, A. Srivastava, B.K. Sapra, Y.S. Mayya,