Article ID Journal Published Year Pages File Type
1729014 Annals of Nuclear Energy 2012 10 Pages PDF
Abstract

The APR+ (Advanced Power Reactor Plus), a next generation nuclear power plant in Korea, has adopted the PAFS (Passive Auxiliary Feedwater System) on the secondary system of the steam generator (SG) as an advanced safety feature. It is intended to replace the conventional auxiliary feedwater system, which consists of active components for the SG in a passive way. It removes decay heat from the reactor core by cooling down the secondary system of the SG using a condensation heat exchanger installed in the PCCT (Passive Condensation Cooling Tank).The objective of this study is to design a condensation heat exchanger for the PAFS and to evaluate the cooling performance for the proposed design using the thermal hydraulic system analysis code, MARS (Multi-dimensional Analysis for Reactor Safety). Requirements such as the heat removal capacity and the prevention of water hammer were preferentially considered to determine the design parameters of the heat exchanger tube. The MARS code analysis result showed that the proposed design of the PAFS heat exchanger is able to cool down the required amount of decay heat. The distribution of a liquid volume fraction and flow regime predicted by the MARS code shows that the proposed design of the heat exchanger excludes the water hammer inside the tube. Estimation of a two-phase flow pressure drop indicates that the pressure drop inside the tube is negligible compared to the total pressure drop in the PAFS. From the MARS code analysis, it is concluded that the proposed design of the condensation heat exchanger in the PAFS satisfies the overall criteria for the performance of the passive heat removal system in APR+.

► Condensation heat exchanger for the PAFS (Passive Auxiliary Feedwater System) was designed. ► The requirement of the heat removal rate and the prevention of water hammer phenomena were considered. ► The proposed design of the heat exchanger satisfied the requirement of the passive heat removal system.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,