Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1729552 | Annals of Nuclear Energy | 2010 | 14 Pages |
Domestic and international regulations for the transportation of radioactive materials strictly prescribe the design requirements for spent nuclear fuel (SNF) transport casks. According to the applicable codes, a transport cask must withstand a free-drop impact of 9 m onto an unyielding surface and a free-drop impact of 1 m onto a mild steel bar. However, the structural performance of a transport cask is not easy to evaluate precisely because the dynamic impact characteristics of the cask, which includes impact limiters to absorb the impact energy, are so complex.In this study, a more advanced and applicable numerical simulation method using the finite element (FE) method via the commercial FE code LS-DYNA is proposed and verified against the experimental results for a 1/3-scale model of the KN-18 SNF transport cask, recently developed in Korea. In addition, the detailed dynamic impact characteristics of the transport cask under free-drop conditions are investigated via the proposed numerical simulation method and actual drop tests to improve the accuracy and optimization of the SNF transport cask design.