Article ID Journal Published Year Pages File Type
1729785 Annals of Nuclear Energy 2009 5 Pages PDF
Abstract

In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal–hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the “Accelerator part” of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the “Reactor part” of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , , ,