Article ID Journal Published Year Pages File Type
1730242 Annals of Nuclear Energy 2008 18 Pages PDF
Abstract
Coolant void reactivity (CVR) is an important factor in reactor accident analysis. Here we study the adjustments of CVR at beginning of burnup cycle (BOC) and keff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice using the optimization and adjoint sensitivity techniques. The sensitivity coefficients are evaluated using the perturbation theory based on the integral neutron transport equations. The neutron and flux importance transport solutions are obtained by the method of cyclic characteristics (MOCC). Three sets of parameters for CVR-BOC and keff-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR-BOC (CBCVR-BOC). To approximate the EOC sensitivity coefficient, we perform constant-power burnup/depletion calculations using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Our aim is to achieve a desired negative CVR-BOC of −2 mk and keff-EOC of 0.900 for the first two cases, and a CBCVR-BOC of −2 mk and keff-EOC of 0.900 for the last case. Sensitivity analyses of CVR and eigenvalue are also included in our study.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,