Article ID Journal Published Year Pages File Type
173043 Computers & Chemical Engineering 2011 15 Pages PDF
Abstract

The aim of this work is the development and experimental validation of a detailed dynamic fuel cell model using the gPROMS modeling environment. The model is oriented towards optimization and control and it relies on material and energy balances as well as electrochemical equations including semi-empirical equations. For the experimental validation of the model a fully automated and integrated hydrogen fuel cell testing unit was used. The predictive power of the model has been compared with the data obtained during load change experiments. A sensitivity analysis has been employed to reveal the most critical empirical model parameters that should be estimated using a systematic estimation procedure. Model predictions are in good agreement with experimental data under a wide range of operating conditions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,