Article ID Journal Published Year Pages File Type
173096 Computers & Chemical Engineering 2011 19 Pages PDF
Abstract

We consider the risk conscious solution of planning problems with uncertainties in the problem data. The problems are formulated as two-stage stochastic mixed-integer models in which some of the decisions (first-stage) have to be made under uncertainty and the remaining decisions (second-stage) can be made after the realization of the uncertain parameters. The uncertain model parameters are represented by a finite set of scenarios. The risk conscious optimization problem under uncertainty is solved by a stage decomposition approach using a multi-objective evolutionary algorithm which optimizes the expected scenario costs and the risk criterion with respect to the first-stage decisions. The second-stage scenario decisions are handled by mathematical programming. Results from numerical experiments for two real-world problems are shown.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,