Article ID Journal Published Year Pages File Type
173173 Computers & Chemical Engineering 2011 32 Pages PDF
Abstract

A mixed-integer linear optimization formulation is developed to analyze the United States energy supply chain network for the hybrid coal, biomass, and natural gas to liquids (CBGTL) facilities. Each state is discretized into octants and each octant centroid serves as a potential location of one facility. The model selects the optimal locations of CBGTL facilities, the feedstock combination, and size of each facility that gives the minimum overall production cost. Two case studies are presented to investigate the effects of various technologies and hydrogen prices. The CBGTL network is capable to supply transportation fuel demands for the country at a cost between $15.68 and $22.06/GJ LHV ($76.55–$112.91/bbl crude oil) of produced liquid fuels for both case studies. Life cycle analysis on each facility in the supply chain network shows that the United States fuel demands can be fulfilled with an excess of 50% emissions reduction compared to petroleum based processes.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,