Article ID Journal Published Year Pages File Type
1732538 Energy 2014 10 Pages PDF
Abstract
With increasing wind farm integrations, unit commitment (UC) is more difficult to solve because of the intermittent and fluctuation nature of wind power. In this paper, scenario generation and reduction technique is applied to simulate the impacts of its uncertainty on system operation. And then a model of thermal UC problem with wind power integration (UCW) is established. Combination of quantum-inspired binary gravitational search algorithm (GSA) and scenario analysis method is proposed to solve UCW problem. Meanwhile, heuristic search strategies are used to handle the constraints of thermal unit for each scenario. In addition, a priority list of thermal units based on the weight between average full-load cost and maximal power output is utilized during the optimization process. Moreover, two UC test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method as well as the performance of the algorithm. The results are analyzed in detail, which demonstrate the model and the proposed method is practicable. The comparison with other methods clearly shows that the proposed method has higher efficiency for solving UC problems with and even without wind farm integration.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,