Article ID Journal Published Year Pages File Type
1733220 Energy 2013 10 Pages PDF
Abstract

The potential of wind-generated electricity to displace existing fossil fuel and nuclear generation in Canada is assessed by combining wind turbine power curves with data from the Canadian Wind Energy Atlas. There are many widely-scattered regions with capacity factors (average power output as a fraction of the rated output) greater than 0.4, and some greater than 0.5, that could supply many times the current electricity production from fossil fuel and nuclear powerplants in Canada. By linking multiple high-wind regions to the major demand centres with high voltage direct current transmission lines, the variation in the aggregate electricity output at time scales of one week or less would be greatly reduced, while variations at longer time scales can be largely offset through anti-phase operation of hydro-electric reservoirs. Assuming onshore and offshore wind farm capital costs of about $2000/kW and $3000/kW, respectively, onshore and offshore transmission line costs of $0.5/kW/km and $0.75/kW/km, respectively, and terminal costs of $250/kW, the cost of electricity (financed at a real interest rate of 3%/yr) is 5–7 cents/kWh, which is less than the likely cost of electricity from new coal powerplants equipped to capture CO2 (at least 9 cents/kWh) or from new nuclear powerplants (10–23 cents/kWh).

► Regions of strong wind are widely distributed across Canada. ► Wind combined with hydropower could displace fossil and nuclear. ► Costs including HVDC transmission would be 5–7 cents/kWh at 3% financing.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
,