Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1733618 | Energy | 2012 | 23 Pages |
In this study, a model is developed to investigate the implications of an hourly day-ahead competitive power market on generator profits, electricity prices, availability and supply security. An integrated simulation/optimization approach is employed integrating a multi-agent simulation model with two alternative optimization models. The simulation model represents interactions between power generator, system operator, power user and power transmitter agents while the network flow optimization model oversees and optimizes the electricity flows, dispatches generators based on two alternative approaches used in the modeling of the underlying transmission network: a linear minimum cost network flow model and a non-linear alternating current optimal power flow model. Supply, demand, transmission, capacity and other technological constraints are thereby enforced.The transmission network, on which the scenario analyses are carried out, includes 30 bus, 41 lines, 9 generators, and 21 power users. The scenarios examined in the analysis cover various settings of transmission line capacities/fees, and hourly learning algorithms. Results provide insight into key behavioral and structural aspects of a decentralized electricity market under network constraints and reveal the importance of using an AC network instead of a simplified linear network flow approach.
► An agent-based simulation model with an AC transmission environment with a day-ahead market. ► Physical network parameters have dramatic effects over price levels and stability. ► Due to AC nature of transmission network, adaptive agents have more local market power than minimal cost network flow. ► Behavior of the generators has significant effect over market price formation, as pointed out by bidding strategies. ► Transmission line capacity and fee policies are found to be very effective in price formation in the market.