Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1734107 | Energy | 2012 | 13 Pages |
This paper develops a differential-evolution-based solution for the problem of proton exchange membrane fuel cell stack modeling. The problem is analytically intractable and computationally hard. The present paper produces results that outperform state-of-the-art approaches on three performance metrics: solution quality corresponding to a given cost, cost of finding a solution of a given quality, and frequency of producing an optimal or near-optimal solution.
► Provides a new solution approach to the PEMFC modeling problem which is an optimization problem of great practical importance. ► The present method provides solutions that are better than those produced by the best-known approaches in the literature. ► The present method outperforms the state-of-the-art approach on three performance metrics.