Article ID Journal Published Year Pages File Type
1734294 Energy 2011 6 Pages PDF
Abstract

The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70% O2 and 35%O2–65%CO2) were compared with those attained in air. The replacement of CO2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O2–79%CO2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected.

► The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. ► The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. ► Addition of steam caused a worsening of the ignition temperature and coal burnout.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , ,