Article ID Journal Published Year Pages File Type
1734358 Energy 2012 14 Pages PDF
Abstract

Nowadays life cycle tools namely; Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Life Cycle Optimization (LCO) are being used to assess new vehicular structures from sustainability and design for the environment perspectives. This manuscript implements a Life Cycle Assessment (LCA) based design approach to assess the performance of vehicular Body-In-White’s (BIW) through its complete life cycle. The proposed LCA model will aid in the early design stages (i.e. conceptual design stage) serving as an eco-design decision-making support tool. This study provides a complete life cycle assessment covering the extraction and the processing of virgin materials, the manufacturing, the use and maintenance stage, the end-of-life stage, in addition to the fuel extraction and production stages. Traditional LCA studies do not usually consider the latter stages which accounts for a significant portion of the energy consumed and the generated CO2 emissions. This study results show that the material selection for vehicular applications is a sensitive process not only to the vehicle lifetime (as expressed in traveled miles), but also to the environmental burdens from the extraction stage and recyclability efforts. Additionally, the proposed study shows the effect of the different materials choices on the vehicle structure functionality.

► It proposes an eco-design using LCA for vehicular structural materials. ► It proposes the inclusion of the fuel extraction and production stages into LCA. ► Investigates the sensitivities of LCA to the material selection process and the vehicle lifetime.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,