Article ID Journal Published Year Pages File Type
1734668 Energy 2011 17 Pages PDF
Abstract

The reduction of CO2 emissions linked with human activities (mainly energy services and transport), together with the increased use of renewable energies, remain high priorities on various political agendas. However, considering the increased consumption of energy services (especially electricity), and the stochastic nature of some of the most promising renewable energies (wind for instance), the challenge is to find the optimal mix of technologies that will provide the energy services, without increasing the CO2 emissions, but nonetheless ensuring reliability of supply. The focus of this paper is to present the DESDOP tool, based on mixed integer linear optimisation technics, that helps giving insight in the optimal mix of technologies that will simultaneously help decrease the emissions while at the same time guarantee resilience of supply. The results show that while it is not yet possible to avoid electricity from the grid completely (hence nuclear or fossil fuel), CO2 reductions up to 20%, at no extra costs compared to the business-as-usual case, are easily achievable.

Research highlights► Mixed integer linear optimisation techniques are a powerful tool to design and optimise district energy systems. ► Integrated energy conversion systems (especially combination of CHPs and heat-pumps) allow CO2 reductions for energy services of at least 20% at no extra-costs compared to business-as-usual (grid and boiler). ► While the grid (hence nuclear and/or fossil fuels) cannot be avoided as long as electricity storage doesn’t come of age, the criticism of anti-wind lobbyists regarding the ineffectiveness of wind power could not be verified.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, ,