Article ID Journal Published Year Pages File Type
1734946 Energy 2010 7 Pages PDF
Abstract

The demand on primary energy resources of three steelmaking technologies has been evaluated using an integrated energy analysis approach that takes into account the energy equivalent of major materials and supplies used in the process, as well as the inefficiency of electricity generation. Two new parameters, Material CO2 Footprint (MCF) and Process CO2 Footprint (PCF), are defined to provide unified measures for carbon footprint of the treated materials, and the process respectively. Using these measures, a comparative study of the three processes has been performed. It is demonstrated that a novel steelmaking technology that operates continuously leads to substantial reduction in the overall energy demand, when compared with the conventional batch processes. CO2 reduction associated with the improvement of the energy efficiency is presented for several scenarios of power generation.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
,