Article ID Journal Published Year Pages File Type
1735080 Energy 2010 14 Pages PDF
Abstract

A comprehensive computational model for biomass combustion is presented, featuring a solid phase combustion model, a fluid dynamic model for the gas phase, and a solid particle transport and deposit formation model. The submodel developed to track particle trajectories is briefly outlined. The model is implemented on the Finite Element code XENIOS++, and a test case is considered of a furnace burning wooden biomass chips added with water and inert material; a dedicated flamelet library is worked out to model combustion. Results underline the capability of the code to predict combustion conditions and, in particular, the growth rates of deposits of different particle size over the furnace walls, as well as the most critical locations for particle deposition.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,