Article ID Journal Published Year Pages File Type
1735238 Energy 2010 7 Pages PDF
Abstract

The size of a cooling inventory is generally designed based on which size can endure the excessive heat load situations that occur sporadically. As a result, cooling systems are often too large for most normal driving modes. There have been numerous efforts to downsize the automotive engine cooling system using novel concepts and strategies. Efficient cooling in automobiles is beneficial in reducing harmful emissions as well as improving fuel economy. A simulation was conducted to validate the feasibility of using a novel cooling strategy that utilized the heat load averaging capabilities of a phase change material (PCM). Three prototypes were designed: full-size, down-sized, and a down-sized prototype with a heat accumulator containing the PCM inside. When the full-size of the cooling inventory was down-sized by 30%, this smaller design failed to dissipate the peak heat load and consequently led to a significant increase in the coolant temperature, around 25 °C greater than that in the full-size system. However, the peak heat load was successfully averaged out in the down-sized system with a heat accumulator. This novel cooling concept will contribute to a substantial reduction in the cooling system in terms of volume and hangover.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,