Article ID Journal Published Year Pages File Type
1735293 Energy 2010 7 Pages PDF
Abstract

An evacuated tubular solar collector was fabricated from acrylics for improved resistance to shattering. A plasmatron was employed to apply a thin gas-barrier coating to the surfaces of the plastic tube to prevent/alleviate gas infiltration. Experiments were conducted to investigate the effect of vacuum level on the performance of the non-glass vacuum-tube solar collector. Inserted in the evacuated tube was a finned heat pipe for solar energy collection and heat transfer to a water tank. Time variations of temperatures on the heat pipe surface and in the water tank were recorded and analyzed for different degrees of vacuum in the collector. The steady-state temperature of the non-glass collector was compared to that of a commercial glass vacuum-tube collector to assess the feasibility of the use of evacuated plastic tubes for solar energy collection. A simple analytical model was also developed to assist in understanding and analyzing the transient behavior and heat losses of the vacuum-tube solar collector.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,