Article ID Journal Published Year Pages File Type
1735557 Energy 2010 6 Pages PDF
Abstract

Selective catalytic reduction (SCR) of NO from simulated flue gas by ammonia with Fe2O3 particles as the catalyst was performed using a magnetically fluidized bed (MFB). X-ray diffraction (XRD) spectroscopy and Brunauer–Emmett–Teller (BET) method were used to analyze Fe2O3 catalyst. Important effects of magnetic fields were observed in the SCR of NO by ammonia over Fe2O3 catalyst. The apparent activation energies of SCR were reduced by external magnetic fields, and the SCR activity of Fe2O3 catalyst was improved with the magnetic fields at low temperatures. Thus the scope of temperature with high efficiency of NO removal was extended from 493–523 K to 453–523 K by magnetic fields. Magnetic fields of 0.01–0.015 T were suggested for NO removal on Fe2O3 catalyst with MFB. The results suggested that the magnetoadsorption of NO onto Fe2O3 surface together with NH2 and NO free radicals effects induced by the external magnetic fields both acted to improve the rate of SCR of NO on Fe2O3 catalyst. On the other hand, magnetic field effects were also attributed to improved gas–solid contact in MFB.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,