Article ID Journal Published Year Pages File Type
173579 Computers & Chemical Engineering 2009 12 Pages PDF
Abstract

In this work, we present a general nonlinear model predictive control (NMPC) framework for low-density polyethylene (LDPE) tubular reactors. The framework is based on a first-principles dynamic model able to capture complex phenomena arising in these units. We first demonstrate the potential of using NMPC to simultaneously regulate and optimize the process economics in the presence of persistent disturbances such as fouling. We then couple the NMPC controller with a compatible moving horizon estimator (MHE) to provide output feedback. Finally, we discuss computational limitations arising in this framework and make use of recently proposed advanced-step MHE and NMPC strategies to provide nearly instantaneous feedback.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,