Article ID Journal Published Year Pages File Type
173841 Computers & Chemical Engineering 2007 13 Pages PDF
Abstract

We consider strategies for integrated design and control through the robust and efficient solution of a mixed-integer dynamic optimization (MIDO) problem. The algorithm is based on the transformation of the MIDO problem into a mixed-integer nonlinear programming (MINLP) program. In this approach, both the manipulated and controlled variables are discretized using a simultaneous dynamic optimization approach. We also develop three MINLP formulations based on a nonconvex formulation, the conventional Big-M formulation and generalized disjunctive programming (GDP). In addition, we compare the outer approximation and NLP branch and bound algorithms on these formulations. This problem is applied to a system of two series connected continuous stirred tank reactors where a first-order reaction takes place. Our results demonstrate that the simultaneous MIDO approach is able to efficiently address the solution of the integrated design and control problem in a systematic way.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,