Article ID Journal Published Year Pages File Type
1739305 Journal of Environmental Radioactivity 2008 8 Pages PDF
Abstract

Biosorption has been developed as an effective and economic method to treat wastewater containing low concentrations of metal pollutants. In this study, a bacterium, Citrobacter freudii, was used as a biosorbent to adsorb uranium ions. The thermodynamics and kinetics of this adsorption, as well as its mechanism, were investigated. The results indicated that the biosorption rate could be better described by a pseudo 2nd-order model than a pseudo 1st-order model. The adsorption of U (VI) proceeded very rapidly in the first 30 min and subsequently slowed down continuously for a long period. The biosorption isotherm of uranium by C. freudii could be described well by the Langmuir or Freundlich isotherm, and the latter was better. The thermodynamics parameters, ΔH°, ΔG°, and ΔS° were calculated according to the results of the experiment, which showed this biosorption as being endothermic and spontaneous. The authors investigated the active sites of bacteria for biosorption and the results proved that carboxyl in the cell wall played an important role in biosorption.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,