Article ID Journal Published Year Pages File Type
1739892 Nuclear Engineering and Technology 2016 14 Pages PDF
Abstract

The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, ,