Article ID Journal Published Year Pages File Type
1740100 Nuclear Engineering and Technology 2013 10 Pages PDF
Abstract

Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a 3° inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every 45° from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of 0° and 180°, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
,