Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1740740 | Progress in Nuclear Energy | 2014 | 7 Pages |
•PVA/chitosan composite was prepared and used for Co2+ removal.•The maximum sorption capacity was 14.39 mg/g.•The FTIR and SEM-EDAX revealed that –NH2 and –OH participated in Co2+ sorption.
Cobalt is one of the toxic radioactive elements and the removal of Co2+ from radioactive wastewater has received increasing attention in recent years. In this paper, polyvinyl alcohol (PVA)/chitosan magnetic composite was prepared and used for Co2+ removal. The effect of initial pH, contact time and initial Co2+ concentration on Co2+ adsorption was investigated. The kinetics, thermodynamic and isotherms of Co2+ sorption onto the composite were determined. The results showed that pseudo second-order equation could be used to describe the Co2+ removal process. The maximum sorption capacity was calculated to be 14.39 mg/g at pH 6.0 and 30 °C using the Langmuir model. The analysis of FTIR and SEM-EDAX were performed before and after Co2+ sorption onto the PVA/chitosan magnetic beads, revealing that the functional groups –NH2 and –OH played main role in Co2+ sorption process. PVA/chitosan magnetic composite is promising adsorbent for removing Co2+ radioactive wastewater.