Article ID Journal Published Year Pages File Type
1741077 Progress in Nuclear Energy 2012 10 Pages PDF
Abstract

Steam Generator (SG) is a crucial component of nuclear power plant. The proper water level control of a nuclear steam generator is of great importance in order to secure the sufficient cooling source of the nuclear reactor and to prevent damage of turbine blades. The water level control problem of steam generators has been a main cause of unexpected shutdowns of nuclear power plants which must be considered for plant safety and availability. The control problem is challenging, especially at low power levels due to shrink and swell phenomena and flow measurement errors. Moreover, the dynamics of steam generator vary as the power level changes. Therefore, it is necessary to improve the water level control system of SG. In this paper, an adaptive estimator-based dynamic sliding mode control method is developed for the level control problem. The proposed method exhibits the desired dynamic properties during the entire output tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability. Simulation results confirm the improvement in transient response obtained by using the proposed controller.

► A novel approach in Dynamic Sliding Mode Control. ► Adaptive estimation of system states in the presence of parametric uncertainties. ► Application to the water level control of Nuclear Steam Generators.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,