Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1741162 | Progress in Nuclear Energy | 2011 | 7 Pages |
Abstract
In present neutron kinetics codes, control rods banks do not have the possibility of dynamic movement during the simulation of a transient; besides it is necessary to send the boron concentration from the thermal-hydraulic code to the neutronic code to account for changes in cross-sections due to boron dilution. For instance, control rod movements are pre-programmed with simple instructions introduced before the beginning of the calculation. Hence, control rod positions are not related to the core characteristics and the control systems at any time of the simulation. This work presents the changes introduced in RELAP5/PARCS v2.7 codes to achieve that control rods and the boron injection become more dynamic and realistic components in such kind of simulators. Furthermore, in order to test the modifications introduced in both codes, it has been analyzed a boron injection transient in a typical PWR Nuclear Power Plant. The thermal-hydraulic model includes all the primary loop components of a PWR, the core fuel assemblies modeled with PIPE components, pumps, steam generators, pressurizer, etc. The neutronic representation of the reactor has been made in a one-to-one basis fuel channel model for the whole core.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
R. Miró, T. Barrachina, A. Abarca, G. Verdú, C. Pereira, J.C. MartÃnez-Murillo,