Article ID Journal Published Year Pages File Type
1741502 Progress in Nuclear Energy 2006 17 Pages PDF
Abstract

In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat à l'Energie Atomique (CEA), France, a coupled 3-D thermal–hydraulics/neutron kinetics benchmark was defined. The overall objective of OECD/NEA V1000CT benchmark [Ivanov, B., Ivanov, K., Groudev, P., Pavlova, M., Hadjiev, V., 2002. VVER-1000 Coolant Transient Benchmark (V1000-CT). Phase 1 – Final Specifications, NEA/NSC/DOC] is to assess computer codes used in the analysis of VVER-1000 reactivity transients where mixing phenomena (mass flow and temperature) in the reactor pressure vessel are complex. Original data from the Kozloduy-6 Nuclear Power Plant are available for the validation of computer codes: one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). The CEA presented results for the V1000CT-1 Exercise 2 using a coupling of FLICA4 [Toumi, I., Gallo, D., Bergeron, A., Royer, E., Caruge, D., 2000. FLICA4: a three dimensional two-phase flow computer code with advanced numerical methods for nuclear applications. Nuclear Engineering and Design 200, 139–155] and CRONOS2 [Akherraz, B., Baudron, A.M., Lautard, J.J., Magnaud, C., Moreau, F., Schneider, D., Gonzales, M., 2004. Manuel de Référence CRONOS 2.6. Technical Report SERMA/LENR/RT/04-3433/A, CEA] via the coupling tool ISAS [Toumi, I., et al., 1995. Specifications of the general software architecture for code integration in ISAS. Euratom Fusion Technology, ITER task S81TT-01/1]. The FLICA4/CRONOS2 VVER-1000 model is based on the data available in the benchmark specifications. This paper summarizes the FLICA4/CRONOS2 model build-up with the associated sensitivity studies and presents the CEA results for V1000CT-1 Exercise 2 as well as a comparison with experimental results at hot power steady state (HP SS).

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
,