Article ID Journal Published Year Pages File Type
174161 Computers & Chemical Engineering 2006 8 Pages PDF
Abstract

Feedforward neural networks of multi-layer perceptron type can be used as nonlinear black-box models in data-mining tasks. Common problems encountered are how to select relevant inputs from a large set of variables that potentially affect the outputs to be modeled, as well as high levels of noise in the data sets. In order to avoid over-fitting of the resulting model, the input dimension and/or the number of hidden nodes have to be restricted. This paper presents a systematic method that can guide the selection of both input variables and a sparse connectivity of the lower layer of connections in feedforward neural networks of multi-layer perceptron type with one layer of hidden nonlinear units and a single linear output node. The algorithm is illustrated on three benchmark problems.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,