Article ID Journal Published Year Pages File Type
1741613 Progress in Nuclear Energy 2009 11 Pages PDF
Abstract

This paper, and its companion paper [Tran C.T., Dinh, T.N. The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part II: Model assessment and application. Progress in Nuclear Energy (companion paper), in preparation] document the development, validation and applications of a simulation platform for computationally-effective, sufficiently-accurate numerical predictions of core melt-structure-water interactions in the light water reactor lower head during a postulated severe core-melting accident. The centerpiece of this work is the Effective Convectivity Model (ECM) for description of energy splitting in a core melt pool. Built on the concept of characteristic velocities in Effective Convectivity Conductivity Model and supported by the key findings obtained from Computational Fluid Dynamics (CFD) simulations of turbulent natural convection, heat transfer and phase changes in volumetrically heated liquid pools, the ECM is refined and extended to three-dimensions and phase changes to enable simulations of melt pool formation and corium coolability in complex geometry such as a Boiling Water Reactor (BWR) lower plenum.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,