Article ID Journal Published Year Pages File Type
1742373 Geothermics 2014 17 Pages PDF
Abstract
Heat extraction by cold water circulation disturbs the thermo-chemical equilibrium of a geothermal reservoir, activating the dissolution/precipitation of minerals in the fractures. Calcite being a more reactive mineral than other rock minerals composing the earth curst, we investigate the permeability alteration during geothermal heat production from carbonate reservoirs. In this study the simulations are performed using the code FEHM with coupled thermo-hydro-chemical (THC) capabilities for a three dimensional domain. The computational domain consists of a single fracture connecting the injection and production wells. For reactive alteration of aperture, the model considers that the kinetics of dissolution/precipitation is coupled to the equilibrium interactions among the aqueous species/ions. The reaction rate predominantly depends on the temperature dependent solubility and advective-dispersive solute transport in the fracture. Due to the nonuniform flow fields resulting from injection and production, the coupled thermo-hydro-chemical processes initiate significant variation of the aperture alteration rate over the fracture. We have considered different operating conditions such as different mass injection rate, injection temperature and concentration of minerals. Our simulations show that dissolution and precipitation can occur simultaneously at different locations in fracture. Furthermore the reaction rate varies with time and the reaction rate can also switch between dissolution and precipitation. To illustrate this interesting behavior, the variations of shape and size of zero reaction rate contours with time are shown. An interesting outcome is a non-monotonic evolution of the overall transmissivity between the wells. The alteration of overall transmissivity largely depends on the concentration of mineral in the injected water with respect to the solubility at the initial fracture temperature. For both dissolution and precipitation controlled cases, the rapid changes in transmissivity provide challenges for maintaining circulation of water at constant mass flow rate.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,