Article ID Journal Published Year Pages File Type
1742594 Geothermics 2010 10 Pages PDF
Abstract

The flooding of the Lorraine coal mines (France), representing a huge reservoir of about 154 × 106 m3, began in June 2006. After attaining thermal equilibrium with the surrounding rocks, the water temperature in the deepest parts is expected to reach 55 °C, giving the opportunity for the extraction of low-enthalpy geothermal waters that may be suitable for district heating purposes. We present some numerical modelling results of the thermally driven convective flow in an open vertical shaft and in the entire mine reservoir. A dual permeability/porosity approach was used in the reservoir model, which includes open galleries and vertical shafts, coal panels backfilled with sand, and intact rock masses. Two scenarios of heat extraction with different flow regimes were investigated. A sensitivity analysis shows that the temperature decline in the production zone is highly dependent on the permeability of the surrounding porous rocks. Larger permeabilities result in higher water temperatures at the production shaft due to greater inflows of warm water from those rock masses.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, ,