Article ID Journal Published Year Pages File Type
174289 Computers & Chemical Engineering 2005 13 Pages PDF
Abstract

Gas–liquid reactors are widely used in many industrial processes such as oxidation, hydroformylation, chlorination, etc. The paper develops comprehensive model for reactors using the mixing cell approach. It incorporates heat and mass transfer effects in the film and uses a boundary element method to solve the film model equations. The fluxes obtained at the interface are then directly used as the link to the reactor model. Simple isothermal and non-isothermal reactions were numerically tested. Application to two industrially important case studies, chlorination of butanoic acid and oxidation of cyclohexane are briefly illustrated. For the autocatalytic chlorination of butanoic acid, the yield of desired product, monochlorobutanoic acid, is favored by the high degree of mixing in the liquid phase. Therefore, this reaction should be carried out in a CSTR. A series of five bubble tanks with parallel gas reactant feed for cyclohexane oxidation was also simulated. It was found that the cyclohexane conversion is low while the oxygen conversion is relatively high and almost constant in each tank. Due to the complex multistep nature of this reaction scheme, oxygen is consumed in many steps of oxidation and selectivity of main products (which are intermediate products in the reaction scheme) depends on the critical control of over-oxidation in the kinetic mechanism.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,