Article ID Journal Published Year Pages File Type
174430 Current Opinion in Chemical Engineering 2016 8 Pages PDF
Abstract

•High temperature properties of glasses can be simulated using BKS and Pedone potentials.•Surface and adsorption properties can be simulated using the INTERFACE potential.•Parameter development necessitates understanding of chemical bonding.•Realistic representation of surface chemistry and pH allows predictions of binding of biomolecules, polymers, and drugs.•Guidance in mechanisms of nucleation and crystal growth can be obtained.

Silicates, glasses, and oxides are widely used in everyday applications such as surfaces of cell phones and tablets as well as in nanostructured form for therapeutics, catalysts, and composites. Modeling of the inorganic–organic interfaces at the 1–100 nm scale has recently become more viable as suitable force fields and molecular models including details of oxide surface chemistry and pH dependent ionization have been introduced. Here we describe computational models for glasses, silica, and common oxides for simulations at high temperatures and at room temperature, including necessary chemical specificity to analyze surfaces and organic interfaces. The bulk structure of glasses, surface chemistry and type of molecular interactions governing adsorption, as well as the feasible accuracy is illustrated by examples. Applications and opportunities of simulation methods are discussed.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,